New Texture Signatures and Their Use in Rotation Invariant Texture Classification 1

نویسندگان

  • Jianguo Zhang
  • Tieniu Tan
چکیده

In this paper, we present a theoretically and computationally simple but efficient approach for rotation invariant texture classification. This method is based on new texture signatures extracted from spectrum. Rotation invariant texture features are obtained based on the extension of the derived signatures. The features are tested with 1000 randomly rotated samples of 20 Brodatz texture classes. Comparative study results show that our method is highly efficient in rotation invariant texture classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification

Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation and scale invariant texture classification using log-polar wavelet signatures. The rotation and scale invariant feature extraction for a given image involves applying a l...

متن کامل

Affine invariant texture signatures

In this paper, we develop a new approach for texture classification independent of affine transforms. Based on spectral representation of texture images under affine transform, anisotropic scale invariant signatures of orientation spectrum distribution are extracted. Peaks distribution vector (PDV) obtained on the distribution of these signatures captures texture properties invariant to affine ...

متن کامل

Rotation-invariant texture classification using feature distributions

A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture classification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR) model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in exper...

متن کامل

Rotation invariant texture classification using LBP variance (LBPV) with global matching

Local or global rotation invariant feature extraction has been widely used in texture classification. Local invariant features, e.g. local binary pattern (LBP), have the drawback of losing global spatial information, while global features preserve little local texture information. This paper proposes an alternative hybrid scheme, globally rotation invariant matching with locally variant LBP tex...

متن کامل

Rotationally Invariant Hashing of Median Binary Patterns for Texture Classification

We present a novel image feature descriptor for rotationally invariant 2D texture classification. This extends our previous work on noise-resistant and intensity-shift invariant median binary patterns (MBPs), which use binary pattern vectors based on adaptive median thresholding. In this paper the MBPs are hashed to a binary chain or equivalence class using a circular bit-shift operator. One bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002